知识点二 充分条件与必要条件
1.充分条件、必要条件与充要条件的概念
若p⇒q,则p是q的充分条件,q是p的必要条件
p是q的充分不必要条件 p⇒q且q?p
p是q的必要不充分条件 p?q且q⇒p
p是q的充要条件 p⇔q
p是q的既不充分也不必要条件 p?q且q?p
【特别提醒】若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.
2.数学中的定义、判定定理、性质定理与必要条件、充分条件的联系
①判定定理中前提是结论的充分条件;
②性质定理中结论是前提的必要条件;
③数学定义中条件是结论的充要条件.即定义可以用于判定也可以作为性质.
3.充分条件与必要条件的两个特征
①对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”则“q⇐p”.
②传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p⇒q且q⇒r”,则“p⇒r”(“p⇐q且q⇐r”,则“p⇐r”).