用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 教案 >> 数学教案
高中数学编辑
2020-2021学年新教材高中数学模块综合提升教案新人教B版选择性必修第三册
下载扣金币方式下载扣金币方式
需消耗3金币 立即下载
2个贡献点 立即下载
2个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别教案
    资源子类同步教案
  • 教材版本人教B版(新教材)
    所属学科高中数学
  • 适用年级高二年级
    适用地区全国通用
  • 文件大小1036 K
    上传用户goldfisher
  • 更新时间2020/12/19 8:54:32
    下载统计今日0 总计2
  • 评论(0)发表评论  报错(0)我要报错  收藏
0
0
资源简介

模块综合提升

判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画“×”

(1)数列的通项公式是唯一的.                                                                        (  )

(2)若数列{ an }是等差数列,则an1一定是anan2的等差中项.                  (  )

(3)b2ac,则abc一定构成等比数列.                                                  (  )

(4)若数列{ an1 an }是等差数列,则{ an }必为等差数列.                          (  )

(5)若数列{an}是等差数列,且mnk3l,则am an ak 3al.

                                                                                                                      (  )

(6){ an }是公比为q的等比数列,且a1a2a2a3a3a4也成等比数列,则q1.                                                                                                    (  )

(7)等比数列{an}的单调性是由公比q决定的.                                                (  )

(8)如果数列{an}的前n项和为Sn,则对nN*,都有anSnSn1.              

                                                                                                                      (  )

(9)已知数列{an}的通项公式是anpnq(其中pq为常数),则数列{an}一定是等差数列.                                                                                                       (  )

(10)等差数列的前n项和公式是常数项为0的二次函数.                                (  )

(11)数列{an}的通项公式是anan,则其前n项和为Sn.                   (  )

(12)如果数列{an}为等比数列,bna2n1a2n,则数列{bn}也是等比数列.

                                                                                                                      (  )

(13)数列{an}为等比数列,则S4S8S4S12S8成等比数列.

                                                                                                                      (  )

(14)如果数列{an}为等比数列,则数列{ln an}是等差数列.                             (  )

(15)若数列{an}{bn}均为等差数列,且前n项和分别是SnTn,则.                                                                                                                          (  )

(16)已知等差数列{an}的公差为d,则有.                           (  )

(17)Sna2a23a3nan之和时只要把上式等号两边同时乘以a即可根据错位相减法求得.                                                                                          (  )

(18)f(x0)是函数yf(x)xx0附近的平均变化率.                                     (  )

(19)f(x0)[f(x0)]表示的意义相同.                                                           (  )

(20)已知函数f(x)xln x,则f(x)上递减.                                          (  )

(21)若函数f(x)在区间(ab)上满足f(x)0,则函数f(x)在区间(ab)上是减函数.                                                                                                                  (  )

(22)f(x)在区间(ab)上是增函数,则f(x)>0(ab)上恒成立.                  (  )

(23)x0是函数f(x)x3的极值点. (  )

(24)对于可导函数f(x)f(x0)0函数f(x)xx0处有极值的必要不充分条件.                                                                                                      (  )

(25)函数的极大值一定大于其极小值.                                                            (  )

(26)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.

                                                                                                                      (  )

(27)将函数yf(x)的各极值与端点处的函数值f(a)f(b)比较,其中最大的一个是最大值,最小的一个是最小值.                                                               (  )

(28)x>0时,ln xxex的大小关系是ln x<xx.                                          (  )

(29)若函数f(x)x(xa)2x2处取得极小值,则a2a6.                   (  )

(30)函数f(x)在区间(ab)存在单调区间可转化为不等式f(x)0(f(x) 0) 在区间(ab)上有解问题.                                                                                 (  )

[提示] (1)× 数列的通项公式可能没有,也可能不止一个.

(2)

(3)× 如a0b0c1时,一定有abc不成等比数列.

(4)× 如数列1,3,6,10,15,21,28.

(5)

(6)

(7)× 等比数列{an}的单调性是由首项a1及公比q共同决定.

(8)× an一定要检验a1的情况.

(9)

(10)× 当公差为0时,等差数列的前n项和公式是常数项为0的一次函数.

(11)× a1时不成立.

(12)× an(1)n时不成立.

(13)× an(1)n时不成立.

(14)× an<0时不成立.

  • 暂时没有相关评论

请先登录网站关闭

  忘记密码  新用户注册