第2课时 分类加法计数原理与分步乘法计数原理的应用
学 习 目 标
|
核 心 素 养
|
1.进一步理解和掌握分类加法计数原理与分步乘法计数原理.(重点)
2.能根据具体问题的特征,选择两种计数原理解决一些实际问题.(重、难点)
3.会根据实际问题的特征,合理地分类或分步.(难点、易混点)
|
1.借助两个计数原理解题提升数学运算的素养.
2.通过合理地分类或分步解决问题提升逻辑推理的素养.
|
|
组数问题
|
【例1】 用0,1,2,3,4五个数字,
(1)可以排出多少个三位数字的电话号码?
(2)可以排成多少个三位数?
(3)可以排成多少个能被2整除的无重复数字的三位数?
[解] (1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125种.
(2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100种.
(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12种排法;另一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因为0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18种排法.因而有12+18=30种排法.即可以排成30个能被2整除的无重复数字的三位数.
1.(变结论)由本例中的五个数字可以组成多少个无重复数字的四位奇数?
[解] 完成“组成无重复数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1,3中任取一个,有2种方法;第二步定首位,把1,2,3,4中除去用过的一个还有3个可任取一个,有3种方法;第三步,第四步把剩下的包括0在内的还有3个数字先排百位有3种方法,再排十位有2种方法.由分步乘法计数原理共有2×3×3×2=36个.
2.(变结论)在本例条件下,能组成多少个能被3整除的四位数?
[解] 一个四位数能被3整除,必须各位上数字之和能被3整除,故组成四位数的四个数字只能是0,1,2,3或0,2,3,4两类.所以满足题设的四位数共有2×3×3×2×1=36个.
解决组数问题的方法
1.对于组数问题,一般按特殊位置(一般是末位和首位)由谁占领分类,分类中再按特殊位置(或者特殊元素)优先的方法分步完成;如果正面分类较多,可采用间接法从反面求解.
2.解决组数问题,应特别注意其限制条件,有些条件是隐藏的,要善于挖掘.排数时,要注意特殊元素、特殊位置优先的原则.
|
抽取与分配问题
|
【例2】 在7名学生中,有3名会下象棋但不会下围棋,有2名会下围棋但不会下象棋,另2名既会下象棋又会下围棋.现在从这7人中选2人分别同时参加象棋比赛和围棋比赛,共有多少种不同的选法?
[思路点拨] 本题应先分类,再分步.
→→→
[解] 法一:分四类:第1类,从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名只会下围棋的学生中选1名参加围棋比赛,有选法3×2=6(种);
第2类,从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加围棋比赛,有选法3×2=6(种);
第3类,从2名只会下围棋的学生中选1名参加围棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛,有选法2×2=4(种);
第4类,从2名既会下象棋又会下围棋的学生中各选1名分别参加象棋比赛和围棋比赛,有选法2×1=2(种).
故不同的选法共有6+6+4+2=18(种).