一、选择题
1.数列2,5,11,20,x,47,…中的x等于( )
A.28 B.32
C.33 D.27
[答案] B
[解析] 由以上各数可得每两个数之间依次差3,6,9,12……故x=20+12=32.
2.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…可以得出的一般结论是( )
A.n+(n+1)+(n+2)+…+(3n-2)=n2
B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
C.n+(n+1)+(n+2)+…+(3n-1)=n2
D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2
[答案] B
[解析] 观察各等式的构成规律可以发现,各等式的左边是2n-1(n∈N*)项的和,其首项为n,右边是项数的平方,故第n个等式首项为n,共有2n-1项,右边是(2n-1)2,
即n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.