(理)三、立体几何综合题
立体几何题担负的重任是考查考生的空间想象能力.《考试大纲》的要求是,能画出简单空间图形(如长方体、球、圆柱、圆锥、棱柱等简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图,理解空间直线、平面位置关系的定义以及它们的判定定理和性质定理,能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.能用空间向量的方法解决直线与直线、直线与平面、平面与平面的夹角的论证和计算问题.
立体几何解答题主要分两类:一类是空间线面关系的判定和推理证明,主要是证明平行和垂直,求解这类问题要依据线面关系的判定定理和性质定理进行推理论证;另一类是空间几何量(空间角、空间距离、几何体体积与面积)的计算.求解这类问题,常用方法是依据公理、定理以及性质等经过推理论证,作出所求几何量并求之.一般解题步骤是“作、证、求”.
阅卷案例3 (2014·广东高考)
如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.
(1)证明:CF⊥平面ADF;