第二节 导数的应用(一)
[例1] (2013·重庆高考改编)设f(x) =a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间.
[自主解答] (1)因为f(x)=a(x-5)2+6ln x,故f′(x)=2a(x-5)+.
令x=1,得f(1)=16a,f′(1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),由点(0,6)在切线上可得6-16a=8a-6,故a=.
(2)由(1)知,f(x)=(x-5)2+6ln x(x>0),f′(x)=x-5+=.