[B组 因材施教·备选练习]
1.函数f(x)=x3-bx2+1有且仅有两个不同零点,则b的值为( )
A. B.
C. D.不确定
解析:f′(x)=3x2-2bx=x(3x-2b),令f′(x)=0,则x=0,x=.当曲线f(x)与x轴相切时,f(x)有且只有两个不同零点,因为f(0)=1≠0,所以f=0,解得b=.
答案:C
2.(2013年高考重庆卷)若a<b<c,则函数f(x)=(x-a)·(x-b)+(x-b)(x-c)+(x-c)·(x-a)的两个零点分别位于区间( )
A.(a,b)和(b,c)内 B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内 D. (-∞,a)和(c,+∞)内
解析:令y1=(x-a)(x-b)+(x-b)(x-c)=(x-b)[2x-(a+c)],y2=-(x-c)(x-a),由a<b<c作出函数y1,y2的图象(图略),由图可知两函数图象的两个交点分别位于区间(a,b)和(b,c)内