[B组 因材施教·备选练习]
1.设函数f(x)=x-,对任意x∈[1,+∞),f(2mx)+2mf(x)<0恒成立,则实数m的取值范围是( )
A. B.
C. D.
解析:对任意x∈[1,+∞),f(2mx)+2mf(x)<0恒成立,即2mx-+2m<0在x∈[1,+∞)上恒成立,即<0在x∈[1,+∞)上恒成立,故m<0,因为8m2x2-(1+4m2)>0在x∈[1,+∞)上恒成立,所以x2>在x∈[1,+∞)上恒成立,所以1>,解得m<-或m>(舍去),故m<-.
答案:A
2.已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<