课时作业
一、选择题
1.圆(x+2)2+y2=5关于原点P(0,0)对称的圆的方程为
( )
A.(x-2)2+y2=5 B.x2+(y-2)2=5
C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=5
A [圆上任一点(x,y)关于原点对称点为(-x,-y)在圆(x+2)2+y2=5上,即(-x+2)2+(-y)2=5.
即(x-2)2+y2=5.]
2.(2014·郑州第一次质检)以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为
( )
A.x2+y2+2x=0 B.x2+y2+x=0
C.x2+y2-x=0 D.x2+y2-2x=0
D [抛物线y2=4x的焦点坐标为(1,0),选项A中圆的圆心坐标为(-1,0),排除A;选项B中圆的圆心坐标为(-0.5,0),排除B;选项C中圆的圆心坐标为(0.5,0),排除C.]
3.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是
(