2009~2013年高考真题备选题库
第2章 函数、导数及其应用
第8节 函数与方程
考点 函数零点与方程的根
1.(2013安徽,5分)已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2.若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为( )
A.3 B.4
C.5 D.6
解析:本题主要考查函数与导数以及函数与方程的基础知识,意在考查考生的数形结合思想、推理论证能力以及创新意识.因为函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可知关于导函数的方程f′(x)=3x2+2ax+b=0有两个不等的实根x1,x2.则方程3(f(x))2+2af(x)+b=0有两个不等的实根,即f(x)=x1或f(x)=x2,原方程根的个数就是这两个方程f(x)=x1和f(x)=x2的不等实根的个数之和.由上述可知函数f(x)在区间(-∞,x1),(x2,+∞)上是单调递增的,在区间(x1,x2)上是单调递减的,又f(x1)=x1<x2,如图所示,由数形结合可知,f(x)=x1时