函数性质的综合应用是高考的重点内容之一,考查的内容灵活多样,函数的奇偶性、单调性、周期性、对称性可以单独命题,也可以将它们综合在一起进行考查,很多学生在做题时不能很准确的利用好各个性质的特征进行解题,从而导致正确率很低.同时试题中往往以抽象函数为题根,来考查考生对函数性质的理解和掌握,而抽象函数就是考生的弱点之一,因而这种类型的试题,难度较大.本文就高考中常见考查题型加以总结和方法的探讨.
1函数单调性的判断
函数单调性判断的常用方法:(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.(2)定义法:先求定义域,再利用单调性定义.(3)图象法:如果 是以图象形式给出的,或者 的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数的正负确定函数的单调区间.