高考数学命题注重知识的整体性和综合性,重视在知识的交汇处考察,对三角形问题的考察重点在于三角变换、向量、函数等的综合,它们之间互相联系、互相交叉,不仅考察三角变换,同时深化了向量的运算,体现了向量的工具作用,试题综合性较高,所以要求学生有综合处理问题的能力,纵观最近几年高考,试题难度不大,但是如果某一知识点掌握不到位,必会影响到整个解题过程,本文从以下几个方面阐述解题思路,以达到抛砖引玉的目的.
1. 向量与三角形问题的结合
向量具有“双重身份”,既可以像数一样满足“满足运算性质”进行代数形式的运算,,又可以利用它的几何意义进行几何形式的变换,同时向量加、减法的几何运算遵循三角形法则和平行四边形法则,这为向量和三角形问题的结合,提供了很好的几何背景.
1.1 向量与三角形谈“心”