【背一背重点知识】
1. 分类加法计数原理和分步乘法计数原理
如果每种方法都能将规定的事件完成,则要用分类加法计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步乘法计数原理将各步的方法种数相乘.
2. 排列与组合的定义
(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从n个不同元素中取出m个元素的排列数公式是Amn=n(n-1)(n-2)…(n-m+1)或写成Amn=n!n-m!.
(2)组合:从n个不同元素中,任取m(m≤n)个元素组成一组,叫做从n个不同元素中取出m个元素的一个组合.从n个不同元素中取出m个元素的组合数公式是Cmn=nn-1n-2…n-m+1m!或写成Cmn=n!m!n-m!.
3. 组合数的性质
①Cmn=Cn-mn;
②Cmn+1=Cmn+Cm-1n.
【讲一讲提高技能】
1.必备技能:
(1)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.
(2)对于复杂的两个原理综合使用的问题,可恰当列出示意图或表格,使问题形象化、直观化.
(3)求解排列、组合问题的思路:排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.
具体地说,解排列、组合的应用题,通常有以下途径:
①以元素为主体,即先满足特殊元素的要求,再考虑其他元素.
②以位置为主体,即先满足特殊位置的要求,再考虑其他位置.