(时间:45分钟 满分:100分)
一、选择题(本大题共6小题,每小题6分,共36分)
1.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为 ( )
A.x2+y2=2 B.x2+y2=4
C.x2+y2=2(x≠±2) D.x2+y2=4(x≠±2)
解析 D 设P(x,y),则|PM|2+|PN|2=|MN|2,
所以x2+y2=4(x≠±2).
2.方程x2+xy=0表示的曲线是 ( )
A.一个点 B.一条直线
C.两条直线 D.一个点和一条直线
解析 C ∵x2+xy=0,∴x(x+y)=0,
∴x=0或x+y=0,∴方程x2+xy=0表示两条直线.
3.已知点F,直线l:x=-,点B是l上的动点.若过B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是 ( )
A.双曲线 B.椭圆
C.圆 D.抛物线