2.3 函数的奇偶性与周期性
一、选择题
1.设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于( ).
A.3 B.1 C.-1 D.-3
解析 由f(-0)=-f(0),即f(0)=0.则b=-1,
f(x)=2x+2x-1,f(-1)=-f(1)=-3.
答案 D
2.已知定义在R上的奇函数,f(x)满足f(x+2)=-f(x),则f(6)的值为 ( ).
A.-1 B.0 C.1 D.2
解析 (构造法)构造函数f(x)=sin x,则有f(x+2)=sin=-sin x=-f(x),所以f(x)=sin x是一个满足条件的函数,所以f(6)=sin 3π=0,故选B.