用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 试题 >> 数学试题
高中数学编辑
2014高考数学(理)一轮复习检测 8.6 空间向量及其运算
下载扣金币方式下载扣金币方式
需消耗2金币 立即下载
1个贡献点 立即下载
1个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别试题
    资源子类一轮复习
  • 教材版本不限
    所属学科高中数学
  • 适用年级高三年级
    适用地区全国通用
  • 文件大小495 K
    上传用户jxzywjxzyw
  • 更新时间2013/7/19 18:53:31
    下载统计今日0 总计16
  • 评论(0)发表评论  报错(0)我要报错  收藏
0
0
资源简介

一、选择题
1.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是(  ).
A.{a,a+b,a-b} B.{b,a+b,a-b}
C.{c,a+b,a-b} D.{a+b,a-b,a+2b}
解析 若c、a+b、a-b共面,则c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则a、b、c为共面向量,此与{a,b,c}为空间向量的一组基底矛盾,故c,a+b,a-b可构成空间向量的一组基底.
答案 C
2.以下四个命题中正确的是(  ).
A.空间的任何一个向量都可用其他三个向量表示
B.若{a,b,c}为空间向量的一组基底,则{a+b,b+c,c+a}构成空间向量的另一组基底
C.△ABC为直角三角形的充要条件是AB→•AC→=0
D.任何三个不共线的向量都可构成空间向量的一组基底
解析 若a+b、b+c、c+a为共面向量,则a+b=λ(b+c)+μ(c+a),(1-μ)a=(λ-1)b+(λ+μ)c,λ,μ不可能同时为1,设μ≠1,则a=λ-11-μb+λ+μ1-μc,则a、b、c为共面向量,此与{a,b,c}为空间向量基底矛盾.
答案 B

  • 暂时没有相关评论

请先登录网站关闭

  忘记密码  新用户注册