一、选择题
1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点( ).
A.1个 B.2个 C.3个 D.4个
答案 A
2.若函数y=f(x)可导,则“f′(x)=0有实根”是“f(x)有极值”的 ( ).
A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分也不必要条件
答案 A
3.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是( ).
A.(-1,2) B.(-∞,-3)∪(6,+∞)
C.(-3,6) D.(-∞,-1)∪(2,+∞)
解析 f′(x)=3x2+2ax+(a+6),因为函数有极大值和极小值,
所以f′(x)=0有两个不相等的实数根,所以Δ=4a2-4×3(a+6)>0,
解得a<-3或a>6.
答案 B