一、选择题
1.设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于( ).
A.3 B.1 C.-1 D.-3
解析 由f(-0)=-f(0),即f(0)=0.则b=-1,
f(x)=2x+2x-1,f(-1)=-f(1)=-3.
答案 D
2.已知定义在R上的奇函数,f(x)满足f(x+2)=-f(x),则f(6)的值为 ( ).
A.-1 B.0 C.1 D.2
解析 (构造法)构造函数f(x)=sin π2x,则有f(x+2)=sinπ2x+2=-sin π2x=-f(x),所以f(x)=sin π2x是一个满足条件的函数,所以f(6)=sin 3π=0,故选B.
答案 B
【点评】 根据函数的性质构造出一个符合条件的具体函数,是解答抽象函数选择题的常用方法,充分体现了由抽象到具体的思维方法.
3.已知函数y=f(x)是定义在R上的任意不恒为零的函数,则下列判断:①f(|x|)为偶函数;②f(x)+f(-x)为非奇非偶函数;③f(x)-f(-x)为奇函数;④[f(x)]2为偶函数.其中正确判断的个数有( )
A.1个 B.2个 C.3个 D.4个
解析 对于①,用-x代替x,得f(|-x|)=f(|x|),所以①正确;对于②,用-x代替x,得f(-x)+f(x)=f(x)+f(-x),所以②错误;对于③,用-x代替x,得f(-x)-f(x)=-[f(x)-f(-x)],所以③正确;易知④错误.
答案 B