1.在数列{an}中,a1=2,an+1=an+ln1+1n,则an= ( ).
A.2+ln n B.2+(n-1)ln n
C.2+nln n D.1+n+ln n
解析 ∵an+1-an=ln n+1n,∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=ln nn-1+ln n-1n-2+…+ln 32+ln 21+2=lnnn-1•n-1n-2•…•32•21+2=2+ln n,故应选A.
答案 A
2.记数列{an}的前n项和为Sn,且Sn=3(an-2),则a2= ( ).
A.54 B.5 C.92 D.53
解析 当n=1时,有a1=S1=3(a1-2),解得a1=3;
当n=2时,有S2=3(a2-2),即a1+a2=3(a2-2),
解得a2=92.
答案 C