一、选择题(每小题5分,共20分)
1.(2013•南昌一模)下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是
( ).
A.y=x2 B.y=|x|+1
C.y=-lg|x| D.y=2|x|
解析 对于C中函数,当x>0时,y=-lg x,故为(0,+∞)上的减函数,且y=-lg |x|为偶函数.
答案 C
2.(2011•辽宁)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为 ( ).
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
解析 法一 由x∈R,f(-1)=2,f′(x)>2,可设f(x)=4x+6,则由4x+6>2x+4,得x>-1,选B.
法二 设g(x)=f(x)-2x-4,则g(-1)=f(-1)-2×(-1)-4=0,g′(x)=f′(x)-2>0,g(x)在R上为增函数.由g(x)>0,即g(x)>g(-1).∴x>-1,选B.
答案 B