一、选择题
1.点M(x0,y0)是圆x2+y2=a2(a>0) 内不为圆心的一点,则直线x0x+y0y=a2与该圆的位置关系是( )
A.相切 B.相交
C.相离 D.相切或相交
解析:由已知得x+y<a2,且x+y≠0,又∵圆心到直线的距离d=>a,
∴直线与圆相离.
答案:C
2.设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=( )
A.4 B.4
C.8 D.8
解析:依题意,可设圆心坐标为(a,a)、半径为r,其中r=a>0,因此圆方程是(x-a)2+(y-a)2=a2,由圆过点(4,1)得(4-a)2+(1-a)2=a2,即a2-10a+17=0,则该方程的两根分别是圆心C1,C2的横坐标,|C1C2|=×=8,选C.
答案:C
3.若a、b、c是直角三角形的三边(c为斜边),则圆x2+y2=2截直线ax+by+c=0所得的弦长等于( )
A.1 B.2
C. D.2
答案:B