一、选择题
1.若等比数列{an}满足anan+1=16n,则公比为( )
A.2 B.4
C.8 D.16
解析:由anan+1=16n,得an+1·an+2=16n+1,
两式相除得,==16,∴q2=16,
∵anan+1=16n,可知公比为正数,∴q=4.
答案:B
2.在等比数列{an}中,a1=2,其前n项和为Sn,若数列{an+1}也是等比数列,则Sn=( )
A.2n+1-2 B.3n C.2n D.3n-1
解析:∵数列{an}为等比数列,设其公比为q,则an=2qn-1.
∵数列{an+1}也是等比数列,
∴(an+1+1)2=(an+1)(an+2+1).
∴a+2an+1=anan+2+an+an+2.
∴an+an+2=2an+1.
∴an(1+q2-2q)=0,得q=1,即an=2.
∴Sn=2n.
答案:C
3.设{an}是等比数列,Sn是{an}的前n项和,对任意 正整数, 有an+2an+1+an+2=0,又a1=2,则S101=( )