一、选择题
1.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是( )
A.|f(x)|-g(x)是奇函数 B.|f(x)|+g(x)是偶函数
C.f(x)-|g(x)|是奇函数 D.f(x)+|g(x)|是偶函数
解析:设F(x)=f(x)+|g(x)|,由f(x)和g(x)分别是R上的偶函数和奇函数,得F(-x)=f(-x)+|g(-x)|=f(x)+|g(x)|=F(x),∴f(x)+|g(x)|是偶函数,又可判断其他选项不恒成立.
答案:D
2. 对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
解析:函数y=|f(x)|的图象关于y轴对称,说明对任意x恒有|f(-x)|=|f(x)|,由此得f(-x)=-f(x)或者f(-x)=f(x), 此时说明y=f(x)可以是奇函数也可以是偶函数,条件不充分;而当f(x)是奇函数时,|f(-x)|=|-f(x)|对于任意x恒成立,即函数y=|f(x)|的图象关于y轴对称,故条件是必要的.
答案:B
3.若定义在R上的偶函数f( x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=( )
A.ex-e-x B.(ex+e-x)
C.(e-x-ex) D .(ex-e-x)