第一课时 角的概念的推广(一)
教学目标:
推广角的概念,引入正角、负角、零角的定义,象限角的概念,终边相同的角的表示方法;理解并掌握正角、负角、零角的定义,掌握所有与α角终边相同的角(包括α角)的表示方法;树立运动变化的观点,理解静是相对的,动是绝对的,并由此深刻理解推广后的角的概念.
教学重点:
理解并掌握正角、负角、零角的定义,掌握终边相同的角的表示方法.
教学难点:
终边相同的角的表示.
教学过程:
Ⅰ.课题导入
有一块以点O为圆心的半圆空地,要在这块空地上划出一个内接矩形ABCD辟为绿地,使其一边AD落在半圆的直径上,另两点B、C落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形ABCD的面积最大?
分析:设OA=t(0<t<a),矩形的面积为S,则S=2t,求S的最值即可.
将S=2t两边平方,得S2=4t2(a2-t2).令y=S2,x=t2,则上式化为y=4x(a2-x), 是以x为自变量的二次函数,其最值不难求得.
这种转化的方法,是一种常用的解题策略,同学们要切记并灵活运用,且将此问题的解求出来,不过请同学们注意,求出的y的最值是不是就是矩形面积的最值呢?相应的x的值是不是就是A、