一、选择题
1.已知数列{an}满足a1=1,an+1=an+2n,则a10=( )
A.1024
B.1023
C.2048
D.2047
解析:选B.依题意an+1-an=2n,所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1+2n-2+…+2+1=2n-1,则a10=210-1=1023,故选B.
2.(2010年高考江西卷)等比数列{an}中,|a1|=1,a5=-8a2,a5>a2,则an=( )
A.(-2)n-1
B.-(-2)n-1
C.(-2)n
D.-(-2)n
解析:选A.设数列{an}的公比为q,由a5=-8a2,得a1q4=-8a1q,即q=-2.由|a1|=1,得a1=±1.当a1=-1时,a5=-16<a2=2,与题意不符,舍去;当a