主要题型:高考中的立体几何题目是很成熟的一种类型,常常考查“平行”、“垂直”两大证明及“空间角”的计算问题,解题方法上表现为传统方法与向量方法:传统方法优势表现为计算简单,过程简洁,但是对概念的理解要求深刻、透彻;向量方法更多的体现是作为一种工具,且有固定的“解题套路”,但是要有准确建立空间直角坐标系及较强的运算能力.
【例5】► (2012·福建)如图,在长方体ABCDA1B1C1D1中AA1=AD=1,E为CD中点.
(1)求证:B1E⊥AD1;
(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;
(3)若二面角AB1EA1的大小为30°,求AB的长.
[审题路线图]
长方体ABCDA1B1C1D1,