1.设y=-2exsinx,则y′等于( )
A.-2excosx B.-2exsinx
C.2exsinx D.-2ex(sinx+cosx)
解析:选D.∵y=-2exsinx,
∴y′=(-2ex)′sinx+(-2ex)·(sinx)′
=-2exsinx-2excosx
=-2ex(sinx+cosx).
2.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为( )
A.4 B.-
C.2 D.-
解析:选A.由条件知g′(1)=2,
又∵f′(x)=[g(x)+x2]′=g′(x)+2x,
∴f′(1)=g′(1)+2=2+2=4.
3.若函数f(x)=exsinx,则此函数图象在点(4,f(4))处的切线的倾斜角为( )
A. B.0