第八章第八节曲线与方程
一、选择题
1.已知| |=3,A、B分别在y轴和x轴上运动,O为原点,= + ,则动点P的轨迹方程是 ( )
A.+y2=1 B.x2+=1
C.+y2=1 D.x2+=1
解析:设A(0,y0),B(x0,0),P(x,y),则由| |=3得x+y=9,又因为=(x,y),=(0,y0),=(x0,0),由=+ 得x=,y=,因此x0=,y0=3y,将其代入x+y=9得+y2=1.
答案:A
2.(2012·深圳模拟)已知两个定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所围成的图形的面积等于 ( )
A.π B.4π
C.8π D.9π
解析:设P(x,y),则|PA|2=(x+2)2+y2,|PB|2=(x-1)2+y2,又|PA|=2|PB|,
∴(x+2)2+y2=4(x-1)2+4y2,
∴(x-2)2+y2=4,表示圆,∴S=πr2=4π.