第二章 第九节 函数与方程
一、选择题
1.“a<-2”是“函数f(x)=ax+3在区间[-1,2]上存在零点x0”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析:当a<-2时,函数f(x)=ax+3在区间[-1,2]上单调递减,此时f(-1)=3-a>0,f(2)=3+2a<0,所以函数f(x)=ax+3在区间[-1,2]上存在零点x0;当函数f(x)=ax+3在区间[-1,2]上存在零点x0时,
有f(-1)f(2)<0,即2a2-3a-9>0,
解得a>3或a<-.
答案:A
2.(2012·皖南八校联考)已知x0是函数f(x)=+ln x的一个零点,若x1∈(1,x0),x2∈(x0,+∞),则( )
A.f(x1)<0,f(x2)<0
B.f(x1)>0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)<0,f(x2)>0
解析:∵f(x0)=0,f(x)=+lnx在定义域内为增函数,