9-2 简单几何体的表面积和体积
1.纸制的正方体的六个面根据其实际方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如下图所示的平面图形,则标“△”的面的方位是( )
A.南 B.北
C.西 D.下
[答案] A
[解析] 将所给图形还原为正方体,如下图所示,最上面为上,最右面为东,则前面为△,可知“△”的实际方位为南.
2.(2010•河南省南阳市调研)一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为32π3,那么这个三棱柱的体积是( )
A.963 B.483
C.243 D.163
[答案] B
[解析] 已知正三棱柱的高为球的直径,底面正三角形的内切圆是球的大圆.设底面正三角形的边长为a,球的半径为R,则a=23R,又43πR3=32π3,∴R=2,a=43,于是V=34a2•2R=483.