课时作业(十二) [第12讲 函数模型及其应用]
[时间:45分钟 分值:100分]
基础热身
1.用18 m的材料围成一块矩形场地,中间有两道隔墙.若使矩形面积最大,则能围成的最大面积是________________________________________________________________________.
2.某商品的单价为5 000元,若一次性购买超过5件,但不超过10件,则每件优惠500元;若一次性购买超过10件,则每件优惠1 000元.某单位购买x件(x∈N*,x≤15),设最低的购买费用是f(x)元,则f(x)的解析式是____________.
3.商店某种货物的进价下降了8%,但销售价没变,于是这种货物的销售利润由原来的r%增加到(r+10)%,那么r=________.
图K12-1
4.有一批材料可以建成200 m的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图K12-1所示),则围成的矩形最大面积为________m2(围墙厚度不计).
能力提升
5.某种放射性元素,100年后只剩原来质量的一半,现有这种元素1 g,3年后剩下________.
6.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200 kg,配料的价格为1.8元/kg,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/kg支付.当9天购买一次配料时该厂用于配料的保管费用P=________.