2012年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题共40分)
一、选择题共8小题。每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.
1.已知集合A={x∈R|3x+2>0} B={x∈R|(x+1)(x-3)>0} 则A∩B=
A (- ,-1)B (-1,- ) C (- ,3)D (3,+ )
【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。因为 ,利用二次不等式可得 或 画出数轴易得: .故选D.
【答案】D
2.设不等式组 ,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是
(A) (B) (C) (D)
【解析】题目中 表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此 ,故选D。
【答案】D
3.设a,b∈R。“a=0”是“复数a+bi是纯虚数”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
【解析】当 时,如果 同时等于零,此时 是实数,不是纯虚数,因此不是充分条件;而如果 已经为纯虚数,由定义实部为零,虚部不为零可以得到 ,因此想必要条件,故选B。
【答案】B