一、高考动向:
解析几何是高中数学的一个重要内容,从近几年的高考试题看,约占总分的20%,一般是一大(解答题)三小(选择题、填空题)或一大两小。
小题以中档题居多,主要是考查直线、圆和圆锥曲线的性质及线性规划问题,一般可利用数形结合方法解决。
大题一般以直线和曲线的位置关系为命题背景,并结合函数、方程、数列、不等式、平面向量、导数等知识,考查轨迹方程、探求曲线性、求参数取值范围、求最值与定值、探求存在性问题。对求轨迹问题,主要涉及圆锥曲线位置关系的题目,要充分应用等价化归的思想方法把几何条件转化为代数(坐标)问题,进而利用韦达定理处理;对于最值、定值问题,常采用①几何法:利用图形性质来解决,②代数法:建立目标函数,再求函数的最值,确定某几何量的值域或取值范围,一般需要建立方程或不等式,或利用圆锥曲线的有界性来求解;对于圆锥曲线中的“存在性”型的题目,可以先通过对直线特殊位置的考查(如直线垂直 轴)探求出可能的结论,然后再去解决更一般的情况,这样也可以实现“分步得分”的解题目的。思想方法上注意定义法、消参法、相关点法、解析法、解方程(组)、数形结合思想、化归与转化思想、函数与方程思想等。