一、教材概念·结论·性质重现
1.直线与圆锥曲线的位置关系的判定
(1)代数法:把圆锥曲线方程C与直线方程l联立消去y,整理得到关于x的方程ax2+bx+c=0.
方程ax2+bx+c=0的解
|
l与C的交点个数
|
a=0
|
b=0
|
无解(含l是双曲线的渐近线)
|
0
|
|
b≠0
|
有一解(含l与抛物线的对称轴平行(重合)或与双曲线的渐近线平行)
|
1
|
a≠0
|
Δ>0
|
两个不相等的解
|
2
|
Δ=0
|
两个相等的解
|
1
|
Δ<0
|
无实数解
|
0
|
(2)几何法:在同一直角坐标系中画出圆锥曲线和直线,利用图象和性质可判定直线与圆锥曲线的位置关系.
(1)直线与双曲线交于一点时,易误认为直线与双曲线一定相切.当直线与双曲线的渐近线平行时,直线与双曲线也相交于一点.
(2)直线与抛物线交于一点时,除直线与抛物线相切外,易忽视直线与对称轴平行或重合时也与抛物线相交于一点的情况.
2.直线与圆锥曲线的相交弦长问题
设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则
|AB|=|x1-x2|
=
=|y1-y2|
=.
解决直线与圆锥曲线的弦长问题的规律:联立方程求交点,由根与系数的关系求出x1+x2,x1x2,代入弦长公式求弦长.