一、选择题
1.如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7=( )
A.14 B.21
C.28 D.35
[答案] C
[解析] ∵{an}是等差数列,∴a3+a4+a5=3a4=12,∴a4=4.
∴a1+a2+…+a7=7a4=28.
2.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )
A.a1+a101>0 B.a2+a100<0
C.a3+a100≤0 D.a51=0
[答案] D
[解析] 由题设a1+a2+a3+…+a101=51a51=0,
∴a51=0.
3.等差数列{an}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为( )
A.30 B.27
C.24 D.21
[答案] B