11.菱形ABCD中,,,将沿BD折起,C点变为E点,当四面体的体积最大时,四面体的外接球的面积为________.
12.已知棱台.正方形的边长为2,正方形的边长为4,平面平面且平面,则棱台的体积为________.
13.在平面四边形PACB中,已知,,,.沿对角线AB折起得到四面体,当PA与平面ABC所成的角最大时,该四面体的外接球的半径为_________.
14.两个互相垂直的平面截球O得圆,,若圆,的相交弦长为4,则球O表面积的最小值为_______________.
15.若圆台的上,下底面半径分别为2,4,高为2,则该圆台的侧面积为_________.
三、解答题:本题共2小题,共25分.解答应写出文字说明、证明过程或演算步骤.
16.(10分)已知四棱锥中,,,,,,平面ABCD,.
(1)设平面平面,求证:;
(2)若E是PA的中点,求四面体PBEC的体积.