A级·基础过关|固根基|
1.在同一平面直角坐标系中,经过伸缩变换后,曲线C:x2+y2=36变为何种曲线,并求曲线的焦点坐标.
解:设圆x2+y2=36上任一点为P(x,y),伸缩变换后对应的点的坐标为P′(x′,y′),
则所以4x′2+9y′2=36,即+=1.
所以曲线C在伸缩变换后得到椭圆+=1,
其焦点坐标为(±,0).
用户名
密 码
忘记密码 新用户注册