如图甲所示,虚线MN的左侧空间中存在竖直向上的匀强电场(上、下及左侧无边界)。一个质量为m、电荷量为q的带正电小球(视为质点),以大小为v0的水平初速度沿PQ向右做直线运动。若小球刚经过D点时(t=0),在电场所在空间叠加如图乙所示随时间周期性变化、垂直纸面向里的匀强磁场,使得小球再次通过D点时的速度方向与PQ连线成60°角。已知D、Q间的距离为(+1)L,t0小于小球在磁场中做圆周运动的周期,重力加速度大小为g。
甲 乙
(1)求电场强度E的大小;
(2)求t0与t1的比值;
(3)小球过D点后将做周期性运动,当小球运动的周期最大时,求此时磁感应强度的大小B0及运动的最大周期Tm。
审题指导:
题中信息
|
方法引导
|
沿PQ向右做直线运动
|
小球受力平衡,通过平衡条件,可求出电场强度的大小
|
小球再次通过D点速度与PQ成60°角
|
画出运动轨迹,找出直线运动位移大小与匀速圆周运动轨迹半径的关系
|
求运动的最大周期
|
当小球运动轨迹最长,圆弧轨迹与MN相切时小球运动周期最大
|
[解析] (1)小球沿PQ向右做直线运动,受力平衡,
则mg=Eq
解得E=。
(2)小球能再次通过D点,其运动轨迹应如图(a)所示。
(a)
设小球做匀速圆周运动的轨迹半径为r,则由几何关系有
s=
又知s=v0t1
圆弧轨迹所对的圆心角θ=2π-=π
则t0=
联立解得=π。
(3)当小球运动的周期最大时,其运动轨迹应与MN相切,小球运动一个周期的轨迹如图(b)所示,
(b)
由几何关系得R+=(+1)L
解得R=L
由洛伦兹力公式和牛顿第二定律有
qv0B0=m
解得B0=
小球在一个周期内运动的路程
s1=3××2πR+6×=(4π+6)L
故Tm==。
[答案] (1) (2)π (3)