1.平面直角坐标系中的坐标伸缩变换
设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:的作用下,点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.
2.极坐标系的概念
(1)极坐标系
如图所示,在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.
(2)极坐标
①极径:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ.
②极角:以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.
③极坐标:有序数对(ρ,θ)叫做点M的极坐标,记为M(ρ,θ).一般不作特殊说明时,我们认为ρ≥0,θ可取任意实数.