[典例1] 从某技术公司开发的某种产品中随机抽取200件,测量这些产品的一项质量指标值(记为Z),由测量结果得如下频率分布直方图:
(1)公司规定:当Z≥95时,产品为正品;当Z<95时,产品为次品.公司每生产一件这种产品,若是正品,则盈利90元;若是次品,则亏损30元.记ξ为生产一件这种产品的利润,求随机变量ξ的分布列和数学期望;
(2)由频率分布直方图可以认为,Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2(同一组中的数据用该区间的中点值作代表).
①利用该正态分布,求P(87.8<Z<112.2);
②某客户从该公司购买了500件这种产品,记X表示这500件产品中该项质量指标值位于区间(87.8,112.2)内的产品件数,利用①的结果,求E(X).
附:≈12.2.
若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 7,P(μ-2σ<Z<μ+2σ)=0.954 5.
[解] (1)由频率估计概率,产品为正品的概率为(0.033+0.024+0.008+0.002)×10=0.67,
所以随机变量ξ的分布列为
所以E(ξ)=90×0.67+(-30)×0.33=50.4.
(2)由频率分布直方图知,抽取产品的该项质量指标值的样本平均数和样本方差s2分别为
=70×0.02+80×0.09+90×0.22+100×0.33+110×0.24+120×0.08+130×0.02=100,
s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+02×0.33+102×0.24+202×0.08+302×0.02=150.
①因为Z~N(100,150),
从而P(87.8<Z<112.2)=P(100-12.2<Z<100+12.2)=0.682 7.
②由①知,一件产品中该项质量指标值位于区间(87.8,112.2)内的概率为0.6827,依题意知X~B(500,0.682 7),所以E(X)=500×0.682 7=341.35.
点评:本题以统计图表为载体,将正态分布、二项分布、频率分布直方图巧妙的融合在一起,体现了知识的整合性与交汇融合性,搞清这些统计图表的含义,掌握好样本特征数的计数方法、各类概率的计算方法及均值与方差的运算是解决问题的关键.