用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 教案 >> 数学教案
高中数学编辑
2022届高考统考一轮复习第8章平面解析几何第5节第2课时直线与椭圆教师用书教案理(数学)
下载扣金币方式下载扣金币方式
需消耗3金币 立即下载
13个贡献点 立即下载
0个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别教案
    资源子类复习教案
  • 教材版本不限
    所属学科高中数学
  • 适用年级高三年级
    适用地区全国通用
  • 文件大小1134 K
    上传用户神奇妙妙屋
  • 更新时间2021/4/13 16:34:00
    下载统计今日0 总计5
  • 评论(0)发表评论  报错(0)我要报错  收藏
0
0
资源简介
1若直线ykx1与椭圆1总有公共点m的取值范围是(  )
Am1                              Bm0
C0m5m1                           Dm1m5
D [直线ykx1恒过定点(0,1)
要使直线ykx1与椭圆1总有公共点,
只需1
m1
m5
m的取值范围为m1m5,故选D]
2已知直线ly2xm椭圆C1.试问当m取何值时直线l与椭圆C
(1)有两个不重合的公共点;
(2)有且只有一个公共点;
(3)没有公共点.
[] 将直线l的方程与椭圆C的方程联立,得方程组
代入,整理得9x28mx2m240.
方程根的判别式Δ(8m)24×9×(2m24)=-8m2144.
(1)Δ0,即-3m3时,方程有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l与椭圆C有两个不重合的公共点.
(2)Δ0,即m±3时,方程有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.
(3)Δ0,即m<-3m3时,方程没有实数根,可知原方程组没有实数解.这时直线l与椭圆C没有公共点.
点评:(1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数; (2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.
  • 暂时没有相关评论

请先登录网站关闭

  忘记密码  新用户注册