[典例1] (1)如图所示,长方体ABCDA1B1C1D1中,AB=AD=1,AA1=,面对角线B1D1上存在一点P使得A1P+PB最短,则A1P+PB的最小值为( )
A. B.
C.2+ D.2
(2)如图所示,PA⊥平面ADE,B,C分别是AE,DE的中点,AE⊥AD,AD=AE=AP=2.
若点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.
(1)A [如图,把△A1B1D1折起至与平面BDD1B1
共面,连接A1B交B1D1于P,则此时的A1P+PB最短,即为A1B的长,在△A1B1B中,由余弦定理求得A1B=,故选A.]
(2)[解] 因为PA⊥平面ADE,AD⊂平面ADE,AB⊂平面ADE,所以PA⊥AD,PA⊥AB,又因为AE⊥AD,B为AE中点,所以PA,AD,AB两两垂直.
以{,,}为正交基底建立空间直角坐标系Axyz,则各点的坐标为A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).
=(-1,0,2),故可设=λ=(-λ,0,2λ)(0≤λ≤1).
又=(0,-1,0),所以=+=(-λ,-1,2λ).
又=(0,-2,2),
所以cos〈,〉==.
设1+2λ=t,t∈[1,3],
则cos2〈,〉==≤,
当且仅当t=,
即λ=时,
|cos〈,〉|的最大值为.
因为y=cos x在上是减函数,
所以当λ=时直线CQ与DP所成角取得最小值.
又因为BP==,所以BQ=BP=.
点评:本例(1)属于线段和的最值问题,求解时采用了化空间为平面,化折为直的重要手段;本例(2)属于解决空间角的最值问题,求解时采用了把空间角的余弦三角函数值表示为参数λ的二次函数,利用这个函数的单调性求三角函数值的最值,求解时需要注意的是函数中自变量的取值范围对最值的决定作用.