1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.
2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.
3.了解简单的分段函数,并能简单应用(函数分段不超过三段).
4.培养学生数学抽象、数学运算能力。
【重点知识梳理】
知识点1.函数与映射的概念
(1)函数:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.
(2)映射:一般地,设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.
知识点2.函数的表示方法
(1)用数学表达式表示两个变量之间的对应关系的方法叫做解析法.
(2)用图象表示两个变量之间的对应关系的方法叫做图象法.
(3)列出表格表示两个变量之间的对应关系的方法叫做列表法.