1.若直线l∥平面α,则过l作一组平面与α相交,记所得的交线分别为a,b,c,…,那么这些交线的位置关系为 ( )
A.都平行
B.都相交且一定交于同一点
C.都相交但不一定交于同一点
D.都平行或交于同一点
【解析】选A.因为直线l∥平面α,所以根据直线与平面平行的性质定理知l∥a,l∥b,l∥c,…,所以a∥b∥c∥….
2.下列说法正确的个数为 ( )
①若直线l上有无数个点不在平面α内,则l∥α;
②如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;
③若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.
A.0 B.1 C.2 D.3
【解析】选B.如图所示:借助长方体模型,棱AA1所在直线上有无数个点在平面ABCD外,但棱AA1所在直线与平面ABCD相交,所以①不正确.
A1B1∥AB,A1B1所在直线平行于平面ABCD,但直线AB⊂平面ABCD,所以②不正确.
直线l与平面α平行,则l与α无公共点,l与平面α内所有直线都没有公共点,所以③正确.