1.(2020·岳阳模拟)函数f(x)=x-ln x的单调递减区间为( )
A.(0,1) B.(0,+∞)
C.(1,+∞) D.(-∞,0)∪(1,+∞)
解析:函数的定义域是(0,+∞),
且f′(x)=1-=,
令f′(x)<0,解得0<x<1,
所以函数f(x)的单调递减区间是(0,1).
答案:A
2.已知函数f(x)=x3+ax+4,则“a>0”是“f(x)在R上单调递增”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:f′(x)=x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.
答案:A
3.(2020·昆明模拟)已知函数f(x)(x∈R)图像上任一点(x0,y0)处的切线方程为y-y0=(3-x0)(x-1)·(x-x0),那么函数f(x)的单调递增区间是( )
A.(-1,1),(3,+∞) B.(-∞,-1),(1,3)
C.(-1,1)∪(3,+∞) D.(-∞,-1)∪(1,3)
解析:因为函数f(x)的图像上任一点(x0,y0)的切线方程为y-y0=(3-x0)(x-1)(x-x0),即函数图像在点(x0,y0)的切线斜率k=(3-x0)(x-1),所以f′(x)=(3-x)(x2-1).由f′(x)=(3-x)(x2-1)>0,解得x<-1或1<x<3,即函数f(x)的单调递增区间是(-∞,-1),(1,3).故选B.
答案:B