1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是( )
A.相切 B.相交
C.相离 D.不确定
解析:由点M在圆外,得a2+b2>1,∴圆心O到直线ax+by=1的距离d=<1=r,则直线与圆O相交,选B.
答案:B
2.与圆C1:x2+y2-6x+4y+12=0,C2:x2+y2-14x-2y+14=0都相切的直线有( )
A.1条 B.2条
C.3条 D.4条
解析:两圆分别化为标准形式,则C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2=36,则两圆圆心距|C1C2|==5,等于两圆半径差,故两圆内切.所以两圆只有一条公切线.故选A.
答案:A
3.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )
A.内切 B.相交
C.外切 D.相离
解析:圆M:x2+y2-2ay=0(a>0)可化为:x2+(y-a)2=a2,由题意,d=,所以有a2=+2,解得a=2.所以圆M:x2+(y-2)2=22,圆心距为,半径和为3,半径差为1,所以二者相交.
答案:B
4.已知圆的方程是x2+y2=1,则在y轴上截距为的切线方程为( )
A.y=x+ B.y=-x+
C.y=x+或y=-x+ D.x=1或y=x+
解析:由题意知切线斜率存在,故设切线方程为y=kx+,则=1,所以k=±1,故所求切线方程为y=x+或y=-x+.
答案:C