2.函数f(x)=3-log2?3-x?的定义域为( )
A.(3,5] B.[-3,5]
C.[-5,3) D.[-5,-3]
解析:要使函数有意义,则3-log2(3-x)≥0,
即log2(3-x)≤3,∴0<3-x≤8,∴-5≤x<3.
答案:C
3.定义在R上的函数f(x)满足f(x)=log2?4-x?,x≤0,f?x-1?-f?x-2?,x>0,则f(3)的值为( )
A.-1 B.-2
C.1 D.2
解析:f(3)=f(2)-f(1)=[f(1)-f(0)]-f(1)=-f(0)=-log24=-2.
答案:B
4.已知函数f(x)=log2(x+1),若f(α)=1,则α=( )
A.0 B.1 C.2 D.3
解析:log2(α+1)=1,∴α+1=2,∴α=1.
答案:B
5.函数f(x)=log13(5-4x-x2)的值域为( )
A.[2,+∞) B.(-∞,-2]
C.[-2,+∞) D.(-∞,2]
解析:u=5-4x-x2=-(x+2)2+9∈(0,9],
而y=log13u在(0,9]上为减函数,∴y≥log139=-2.
答案:C