1.设向量a=(1,0),b=(,),则有(  )
A.|a|=|b|                                                     B.a·b=
C.(a-b)⊥b                                                            D.a∥b
解析:a-b=(,-),(a-b)·b=×-×=0,
∴(a-b)⊥b.
答案:C
2.已知a=(3,-1),b=(1,-2),则向量a与b的夹角为(  )
A.                                                                           B.
C.                                                                           D.
解析:设a,b的夹角为θ,
即cos θ==.
∵0°≤θ≤180°.∴θ=.
答案:B
3.设向量a,b满足|a|=1,|a-b|=,a·(a-b)=0,则|2a+b|=(  )
A.2                                                                         B.2
C.4                                                                         D.4
解析:由a·(a-b)=0,可得a·b=a2=1,由|a-b|=,可得(a-b)2=3,即a2-2a·b+b2=3,解得b2=4,所以(2a+b)2=4a2+4a·b+b2=12,|2a+b|=2.
答案:B