第八章 立体几何初步
8.1 基本立体图形
第1课时 棱柱、棱锥、棱台
[目标] 1.记住棱柱、棱锥、棱台的定义及结构特征;2.理解棱柱、棱锥、棱台之间的关系;3.能用棱柱、棱锥、棱台的定义及结构特征解答一些简单的有关问题.
[重点] 棱柱、棱锥、棱台的定义及结构特征.
[难点] 棱柱、棱锥、棱台之间关系的理解.
要点整合夯基础
知识点一 空间几何体
[填一填]
1.空间几何体的定义
空间中的物体都占据着空间的一部分,如果只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.
2.空间几何体的分类
(1)多面体:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.
(2)旋转体:一条平面曲线(包括直线)绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体,这条定直线叫做旋转体的轴.
[答一答]
1.多面体与旋转体的主要区别是什么?
提示:多面体是由多个多边形围成的几何体,旋转体是由平面图形绕轴旋转而形成的几何体.
2.多面体最少有几个面,几个顶点,几条棱?
提示:多面体最少有4个面、4个顶点和6条棱.
知识点二 棱柱的结构特征
[填一填]
1.有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.在棱柱中,两个互相平行的面叫做棱柱的底面,它们是全等的多边形;其余各面叫做棱柱的侧面,它们都是平行四边形;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.
2.一般地,我们把侧棱垂直于底面的棱柱叫做直棱柱,侧棱不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的直棱柱叫做正棱柱,底面是平行四边形的四棱柱也叫做平行六面体.
[答一答]
3.棱柱的各侧棱是什么关系?各侧面是什么样的多边形?两个底面的关系是怎样的?
提示:根据棱柱的定义,棱柱的各侧棱互相平行,侧面是平行四边形,两个底面是全等的多边形.
4.有两个面互相平行,其余各面都是平行四边形的几何体一定是棱柱吗?
提示:不一定,因为“其余各面都是平行四边形”并不等价于“相邻两个四边形的公共边都互相平行”,如图所示.
知识点三 棱锥的结构特征
[填一填]
有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.这个多边形面叫做棱锥的底面;有公共顶点的各个三角形面叫做棱锥的侧面;相邻侧面的公共边叫做棱锥的侧棱;各侧面的公共顶点叫做棱锥的顶点.底面是正多边形,并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥.
[答一答]
5.棱锥的侧面是什么样的多边形?有什么特征?
提示:根据棱锥的定义,棱锥的侧面一定是三角形,且各个三角形有公共顶点.