第八章 8.6 8.6.3 第1课时
1.二面角是指( C )
A.一个平面绕这个平面内的一条直线旋转所组成的图形
B.一个半平面与另一个半平面组成的图形
C.从一条直线出发的两个半平面组成的图形
D.两个相交的平行四边形组成的图形
[解析] 根据二面角的定义可知,选C.
2.如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论正确的是( C )
A.平面ABC⊥平面ABD
B.平面ABD⊥平面BDC
C.平面ABC⊥平面BDE,且平面ADC⊥平面BDE
D.平面ABC⊥平面ADC,且平面ADC⊥平面BDE
[解析] ∵AB=CB,且E是AC的中点,∴BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.∵AC在平面ABC内,∴平面ABC⊥平面BDE.又AC⊂平面ACD,∴平面ACD⊥平面BDE,故选C.
3.已知正四棱锥(底面为正方形各侧面为全等的等腰三角形)的体积为12,底面对角线的长为2,则侧面与底面所成的二面角的大小为__60°__.
[解析] 设正四棱锥为S-ABCD,
如图所示,高为h,底面边长为a,
则2a2=(2)2,
∴a2=12.
又a2h=12,∴h==3.
设O为S在底面上的投影,作OE⊥CD于E,连接SE,
可知SE⊥CD,∠SEO为所求二面角的平面角.
tan∠SEO===,∴∠SEO=60°.
∴侧面与底面所成二面角的大小为60°.
4.如图,在空间四边形ABCD中,AB=BC,CD=DA,E,F,G分别是CD,DA,AC的中点,求证:平面BEF⊥平面BGD.
[证明] ∵AB=BC,G为AC中点,所以AC⊥BG.同理可证AC⊥DG.
又∵BG∩DG=G,BG,DG⊂平面BGD,
∴AC⊥平面BGD.
∵E,F分别为CD,DA的中点,∴EF∥AC,
∴EF⊥平面BGD.
又∵EF⊂平面BEF,∴平面BEF⊥平面BGD.